• 100 Series—austenitic chromium-nickel-manganese alloys
 o Type 101—austenitic that is hardenable through cold working for furniture
 o Type 102—austenitic general purpose stainless steel working for furniture
• 200 Series—austenitic chromium-nickel-manganese alloys
 o Type 201—austenitic that is hardenable through cold working
 o Type 202—austenitic general purpose stainless steel
• 300 Series—austenitic chromium-nickel alloys
 o Type 301—highly ductile, for formed products. Also hardens rapidly during mechanical working. Good weldability. Better wear resistance and fatigue strength than 304.
 o Type 302—same corrosion resistance as 304, with slightly higher strength due to additional carbon.
 o Type 303—free machining version of 304 via addition of sulfur and phosphorus. Also referred to as "A1" in accordance with ISO 3506.
 o Type 304—the most common grade; the classic 18/8 stainless steel. Also referred to as "A2" in accordance with ISO 3506.
 o Type 304L—same as the 304 grade but contains less carbon to increase weldability. Is slightly weaker than 304.
 o Type 304LN—same as 304L, but also nitrogen is added to obtain a much higher yield and tensile strength than 304L.
 o Type 308—used as the filler metal when welding 304
 o Type 309—better temperature resistance than 304, also sometimes used as filler metal when welding dissimilar steels, along with inconel.
 o Type 316—the second most common grade (after 304); for food and surgical stainless steel uses; alloy addition of molybdenum prevents specific forms of corrosion. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304.
 o Type 321—similar to 304 but lower risk of weld decay due to addition of titanium. See also 347 with addition of niobium for desensitization during welding.
• 400 Series—ferritic and martensitic chromium alloys
 o Type 405—ferritic for welding applications
 o Type 408—heat-resistant; poor corrosion resistance; 11% chromium, 8% nickel.
 o Type 409—cheapest type; used for automobile exhausts; ferritic (iron/chromium only).
 o Type 410—martensitic (high-strength iron/chromium). Wear-resistant, but less corrosion-resistant.
Type 416—easy to machine due to additional sulfur
Type 420—Cutlery Grade martensitic; similar to the Brearley's original rustless steel. Excellent polishability.
Type 430—decorative, e.g., for automotive trim; ferritic. Good formability, but with reduced temperature and corrosion resistance.
Type 439—ferritic grade, a higher grade version of 409 used for catalytic converter exhaust sections. Increased chromium for improved high temperature corrosion/oxidation resistance.
Type 440—a higher grade of cutlery steel, with more carbon, allowing for much better edge retention when properly heat-treated. It can be hardened to approximately Rockwell 58 hardness, making it one of the hardest stainless steels. Available in four grades: 440A, 440B, 440C, and the uncommon 440F (free machinable). Type 446—For elevated temperature service

- 500 Series—heat-resisting chromium alloys
- 600 Series—martensitic precipitation hardening alloys
 - 601 through 604: Martensitic low-alloy steels.
 - 610 through 613: Martensitic secondary hardening steels.
 - 614 through 619: Martensitic chromium steels.
 - 630 through 635: Semiaustenitic and martensitic precipitation-hardening stainless steels.
 - Type 630 is most common PH stainless, better known as 17-4; 17% chromium, 4% nickel.
 - 650 through 653: Austenitic steels strengthened by hot/cold work.
 - 660 through 665: Austenitic superalloys; all grades except alloy 661 are strengthened by second-phase precipitation.

Type 2205—the most widely used duplex (ferritic/austenitic) stainless steel grade. It has both excellent corrosion resistance and high strength.